

NSC9264 Automotive Capacitive Sensor Conditioner with SENT Interface

Datasheet (EN) 1.0

Product Overview

The NSC9264 is a highly integrated and AEC-Q100 qualified IC for capacitive sensor conditioning. The NSC9264 integrates a C/V converter, a 24-bit primary signal measurement channel, a 24-bit temperature measurement channel and a sensor calibration logic. With the calibration algorithm built in the internal MCU, the NSC9264 supports to compensate sensor offset, sensitivity, temperature drift up to 2nd order , and non-linearity up to the 3rd order. The calibration coefficients are stored in a 64-Byte EEPROM that can be programmed multiple times. The NSC9264 also supports Over-voltage and Reverse-voltage protection. It can provide SENT output with sensor diagnostic function.

Applications

- Capacitive Pressure Sensors
- Automotive Air-conditioner
- Oil Pressure Sensors

Device Information

Part Number	Package	Body Size
NSC9264_Q0SSR	SSOP16	5mm ×6mm

Block Diagrams

Key Features

- Over-voltage and Reverse-voltage protection between -24V ~ 24V
- C/V converter with at most ±16pF differential capacitor input
- 24-bit ADC for primary signal measurement
- 24-bit ADC for temperature measurement
- Internal and external temperature sensor supported
- Low temperature drift voltage reference
- 1X~8X ADC digital gain
- Sensor calibration algorithm embedded in a built-in MCU
- 64-Bytes EEPROM
- Special OWI interface
- SENT interface compliant with SAE J2716
- AEC-Q100 qualified
- Operation temperature: -40°C~150°C

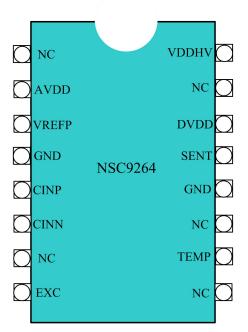


Figure 1. NSC9264 Block Diagram

INDEX

1. PIN CONFIGURATION AND FUNCTIONS	3
2. ABSOLUTE MAXIMUM RATINGS	4
3. ESD RATING	4
4. ELECTRICAL CHARACTERISTICS	4
4.1. ELECTRICAL CHARACTERISTICS	4
5. REGISTER DESCRIPTION	
5.1. NORMAL REGISTERS5.2. EEPROM REGISTERS	
6. FUNCTION DESCRIPTION	15
6.1. OVERVIEW	15
6.2. ANALOG FRONT-END MODULE 1: PRIMARY SIGNAL CHANNEL	
6.2.1. CAPACITANCE MEASUREMENT MODE	16
6.2.2. THE MEASUREMENT RANGE OF C/V CONVERTER	
6.2.2.1. THE DIFFERENTIAL INPUT CAPACITANCE RANGE	
6.2.2.2. THE COMMON MODE CAPACITANCE RANGE	
6.2.3. DIGITAL FILTER	
6.3. ANALOG MODULE 2: TEMPERATURE MEASUREMENT CHANNEL	
6.3.1. INTERNAL TEMPERATURE SENSOR	
6.4. SENT INTERFACE MODULE	
6.4.1. PHYSICAL DRIVER	
6.4.2. FAST CHANNEL	
6.4.3. SERIAL MESSAGE CHANNEL	
6.5. POWER MANAGEMENT	20
6.5.1. POWER ON RESET	21
6.5.2. OVER-VOLTAGE AND REVERSE-VOLTAGE PROTECTION	
6.6. BUILD-IN MCU CORE AND CONTROL LOGICS	
6.6.1. WORK MODES	
6.6.2. EEPROM	
6.6.2.2. PROGRAMMING 6.6.3. BUILD-IN MCU CORE	
6.6.4. CALIBRATION	
6.7. DIAGNOSTIC AND ALARM	
7. SERIAL INTERFACE	
7.1. OWI PIN CONFIGURATION	
7.2. TIMING SPEC	-
7.3. ENTER OWI MODE	
7.4. OWI PROTOCOL	
7.5. QUIT OWI COMMUNICATION	
8. APPLICATION NOTE	
8.1. TYPICAL APPLICATION CIRCUIT	
9. PACKAGE INFORMATION	
10. TAPE AND REEL INFORMATION	
11. ORDERING INFORMATION	
12. REVISION HISTORY	26

1. Pin Configuration and Functions

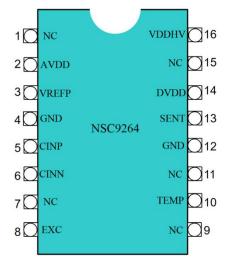


Figure 1.1 NSC9264 Package

Table 1.1 NSC9264 Pin Configuration and Descrip	otion
---	-------

NSC9264 Pin NO.	Symbol	Function
1	NC	Floating
2	AVDD	Internal analog power supply
3	VREFP	Internal Reference voltage VREF output/External Reference voltage input(set by register 0xA2)
4	GND	Ground
5	CINP	Capacitance measurement channel input positive
6	CINN	Capacitance measurement channel input negative
7	NC	Floating
8	EXC	Output excitation source
9	NC	Floating
10	TEMP	External temperature sensor input
11	NC	Floating
12	GND	Ground
13	SENT	SENT interface
14	DVDD	1.8V digital supply from internal LDO
15	NC	Floating

16 VDDHV

Power supply with OVP/RVP

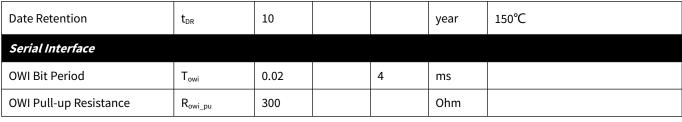
2. Absolute Maximum Ratings

Parameters	Symbol	Min	Тур	Мах	Unit	Comments
Power Supply Voltage	VDDHV _{max}	-24		24	V	
Withstand Voltage to Ground (SENT)	V _{SENT}	-24		24	V	
AVDD Output	AVDD	-0.3		6.5	V	
Analog Pin Voltage		-0.3		AVDD+0.3	V	
Analog Output Current Limit				25	mA	
Digital Pin Voltage		-0.3		AVDD+0.3	v	25℃
Maximum Junction Temperature	T _{jmax}	T _{stg}		155	°C	
Storage Temperature		-60		150	°C	
Operation Temperature	T _{A_EXT}	-40		150	°C	Normal temperature range

3. ESD Rating

	Ratings				
Electrostatic Discharge	 Human body model (HBM), per AEC-Q100-002 Rev E All other pins to AVDD/VDDHV All other pins to GND IO pins to IO pins 	±1.5	kV		
	Charged device model(CDM), per AEC-Q100-011 Rev D ● All pins	±750	V		

4. Electrical Characteristics


4.1. Electrical Characteristics

Typical conditions:VDDHV=5V;Tempature=25°C;

Parameters	Symbol	Min	Тур.	Мах	Unit	Comments
Supply Voltage Range	VDDHV	4.5	5	5.5	V	
AVDD Output	AVDD		4.8		V	Supply on VDDHV pin
DVDD LDO Output	DVDD	1.75	1.8	1.85	V	

Power On Reset	V _{POR_AVDD}		3.46		v	POR threshold during power-up
Operation Current	I _{avdd1}		1.9		mA	
Reference Voltage and Curren			1.5			
VREF Output	VREF		2		V	
VREF Current Limit			20		mA	Short to Ground
Capacitance Measurement Ch			20			
cupacitainee incusarement on			±16		pF	CV_RANGE<1:0> = 2'b00
			±10 ±12		pF	CV_RANGE<1:0> = 2'b01
Differential Input Capacitance Range	CRANGE		±12		pF	CV_RANGE<1:0> = 2'b10
-			±0 ±4		•	CV_RANGE<1:0> = 2'b11
			±4 48		pF pF	CV_RANGE<1:0>= 2 D11 CV_RANGE<1:0>=2'b00
			36			CV_RANGE<1:0>=2'b00
Common Mode Capacitance Range	C _{CM_RANGE}				pF	
			24		pF	CV_RANGE<1:0>=2'b10
			24		pF	CV_RANGE<1:0>=2'b11
CAPDAC Range		0		63.5	pF	0.5pF/LSB
PADC Resolution	RESRAW		24		Bits	
PADC Output Data Rate	ODR_P	5		4800	Hz	
PADC ENOB	ENOB_P	Refer to 1	Table 5.1		Bits	Depends on ODR_P
Excitation Source (EXC)						
Excitation Frequency	CV_FREQ		86		kHz	
Excitation Voltage Amplitude	VAC		2	2.2	V	
Drivability	DRV		50		pF	Allow ground capacitance
Temperature Measurement C	hannel (Interna	al and Exte	ernal Temp	erature Se	nsor)	
TADC Resolution	RES_T	24	1	1	Bit	
TADC Gain	GAIN_T	1		4		1,2,4
TADC Output Data Rate	ODR_T	5		4800	Hz	
TADC ENOB	ENOB_T	Refer to 1	Table 6.3	1		
Error of Internal Temperature Sensor			±1	±2	℃	-40 to 125 ℃
TEMP Input Impedance			1		Gohm	
SENT Interface						
Signal Fall Time	t _{FALL}			26	μs	Clock tick = 12µs;

						Values scale proportionally to tick-time
						Refer to Figure 2.1
Signal Rise Time	t _{rise}			72	μs	Clock tick = 12µs; Values scale proportionally to tick-time Refer to Figure 2.1
Low State Output Voltage 1	V _{SENT(OL1)}			0.5	V	ISENT < 0.1mA
Low State Output Voltage 2	V _{SENT(OL2)}			0.65	V	ISENT < 0.52mA
High State Output Voltage	V _{SENT(OH)}	4.1			V	ISENT > -0.32mA
Sink Current Limitation	I _{SENT(SINK)}			15	mA	
Source Current Limitation	I _{SENT(SOURCE)}	-10			mA	
Tristate Output Leakage 1	I _{SENT(LEAK1)}	-10		10	μA	-5V < VSENT < 5V, Tj < 125℃
Tristata Outrast Laska as 2						VDDHV short with GND,
Tristate Output Leakage 2	I _{SENT(LEAK2)}	-60		60	μΑ	-5V <vsent 5v,="" <="" tj="150°C</td"></vsent>
Low State Duration	t _{stable, low}	24			μs	Clock tick = 12µs, pulse low for 5 clk ticks; Values scale proportionally to tick-time Refer to Figure 4.1
High State Duration	t _{stable, high}	24			μs	Clock tick = 12µs, pulse high for 7 clk ticks; Values scale proportionally to tick-time Refer to Figure 4.1
Diagnostic and Alarm						
Over Temperature Protection	T _{ot}	170	180		°C	
VDDHV Over Voltage	V _{OVDetThres}		6		V	
VDDHV Under Voltage	VUVDetThres		4		V	
OSC						
ADC Clock	FOSC_MOD		1.2		MHz	
Clock Rate Error	FOSC_ERR	-1%		1%		-40~125°C
EEPROM	· 				·	
Programming Temperature	T _{EEP}	-25		105	°C	
Endurance	N _{EEP}	500				
Programming Time	t _{EEP}		800		ms	

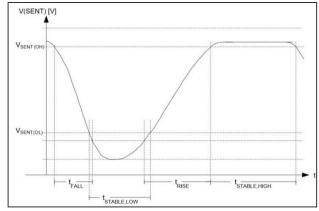


Figure 4.1 $t_{\mbox{\tiny FALL}}$ and $t_{\mbox{\tiny RISE}}$

5. Register Description

The register map of the NSC9264 includes two parts, normal registers and EEPROM registers. The normal registers include data registers and some control registers, while the EEPROM registers are mainly configuration registers and calibration coefficients. All EEPROM registers should be written by external interface on command mode (register 'CMD' = '0x00').

5.1. Normal Registers

IF_CTRL(R/W)

Addr	Bit	Register Name	Default	Description
0x00	5, 2	SOFTRESET	1'b0	Set either of these two bits to 1 to reset the chip. Return to 0 after reset.

STATUS (Read Only)

Addr	Bit	Register Name	Default	Description
0x02	7 – 3	ERROR_CODE<4:0>	5'b00000	Reserved
	2	CRC_ERR	1'b0	1: CRC error detected during EEPROM loading; When CRC error is asserted, EEPROM register bits 'OWI_DIS', 'EEPROM_LOCK' are forced to 0.
	1	LOADING_END	1'b0	1: EEPROM loading end flag
	0	DRDY	1'b0	1: Set after a new data updated and automatically cleared after a register reading to PDATA/TDATA or before the next data's coming.

PDATA (Read Only, Primary Channel Data Register)

Ad	ldr	Bit	Register Name	Default	Description
0x0	06	7 – 0	PDATA<23:16>	0x00	Signed, 2's complement:

0x07	7 – 0	PDATA<15:8>	0x00	When 'RAW_P' = 1, store the ADC output of primary channel;
0x08	7 – 0	PDATA<7:0>	0x00	When 'RAW_P' = 0, store the calibrated primary channel data.

TDATA (Read Only, Temperature Channel Data Register)

Addr	Bit	Register Name	Default	Description
0x09	7 – 0	TDATA<23:16>	0x00	Signed, 2's complement:
0x0a	7 – 0	TDATA<15:8>	0x00	When 'RAW_T' = 1, store the ADC output of temperature channel;
0x0b	7 – 0	TDATA<7:0>	0x00	When 'RAW_T' = 0, store the calibrated temperature data, LSB = $1/2^{16}$ C.
				Real Temperature = TDATA/2^16+25°C

COMMAND (R/W, Command Register)

Addr	Bit	Register Name	Default	Description
0x30	7 – 0	CMD<7:0>	0x03	0x00: Command mode, all EEPROM can be written only in command mode; 0x03: Active mode; 0x33: Enter EEPROM program mode

QUIT_OWI (Write Only)

Addr	Bit	Register Name	Default	Description
0x61	7 – 0	QUIT_OWI <7:0>	0x00	 Write '0x5D' to this register to quit OWI communication. If 'QUIT_OWI_CNT' = 0x00, quit OWI communication permanently; If 'QUIT_OWI_CNT' is not 0x00, quit OWI mode temporarily with a certain time and then get back to OWI mode.

QUIT_OWI_CNT (R/W)

Addr	Bit	Register Name	Default	Description
0x62	7 – 0	QUIT_OWI_CNT<7:0	0x00	Time for temporarily quit OWI communication Mode.
		>		0x00: Quit forever, 0x01: 50ms, 0x02: 100ms 0xFF: 12.8s

EE_PROG (R/W)

Addr	Bit	Register Name	Default	Description
0x6a	7 – 0	EE_PROG<7:0>	0x00	Write '0x3E / 0xBE' to this register to start EEPROM Programming. Automatically cleared to '0x00' after programming finished. 0x3E: EEPROM erased by byte 0xBE: EEPROM erased by bank

5.2. EEPROM Registers

SYS_CONFIG(R/W)

Addr	Bit	Register Name	Default	Description
0xa1	7	CAL_MODE	1'b0	0: One segment calibration with the 2 nd order temperature coefficients;
				1: Two segment calibration with the 1 st order temperature coefficients
	6-2	RESEVED	5'b00000	RESEVED
	1	OWI_DIS	1'b0	1: OWI disabled (won't be effective until next power on reset or soft reset after EEPROM is programmed)
	0	RESEVED	1'b0	RESEVED

OUTPUT_CONFIG (R/W)

Addr	Bit	Register Name	Default	Descri	ption																			
0xa2	7 - 4	Tick_sel<3:0>	4'b0000	SENT o	lock tick	selection																		
				0000: 1	2µs; 00	01:3µs;	0010: 4µ	us; 0011	L: 5µs ;															
				0100: 0	6μs; 01	01:8µs;	0110: 10	µs;0111	L:12µs;															
				1000: 1	6μs;100	01:24µs;	1010: 32	μs;101	1:40µs;															
				1100: 4	8μs ; 110	01:64µs;	1110:80	μs; 111	.1: 90µs															
	3	NPP	1'b0	0: paus	e pulse																			
				1: no p	ause puls	se																		
	2 - 0	SENT_struct_sel<2:0>	3'b000		Data 1	Data 2	Data 3	Data 4	Data 5	Data 6														
				3'b000	CH1_MSN	CH1_MidN	CH1_LSN	Counter_ MSN	Counter_ LSN	Inverted CH1_MSN														
				3'b001	CH1_MSN	CH1_MidN	CH1_LSN	Counter_ MSN	Counter_ LSN	Zero														
				3'b010	CH1_MSN	CH1_MidN	CH1_LSN	CH2_LSN	CH2_MidN	CH2_MSN														
				3'b011	CH1_MSN	CH1_MidN	CH1_LSN	Zero	Zero	Zero														
				3'b100	CH1_MSN	CH1_ MidMSN	CH1_ MidLSN	CH1/CH2 _LSN	CH2_MidN	CH2_MSN														
																		3'b101	CH1_MSN	CH1_ MidMSN	CH1_ MidLSN	CH1_LSN	CH2_LSN	CH2_MSN
				3'b110	CH1_MSN	CH1_MidN	CH1_LSN	Not imple -mented	Not imple -mented	Not imple -mented														
				3'b111	Most significant bits 11 - 9	Bits 8 - 6	Bits 5 - 3	Least significant bits 2 - 0	Not imple -mented	Not imple -mented														

CV_CONFIG (R/W)

Addr	Bit	Register Name	Default	Description
0xa3	7	Reserved	1'b0	Reserved. Should be 0
	6-0	CAPOFF<6:0>	7'b000000	Set internal CAPDAC offset for input
				CAPOFF = CAPOFF<6:0>*0.5pF

PCH_Config1 (R/W)

Addr	Bit	Register Name	Default	Description
0xa4	7 – 6	RESERVED	2'b00	Should be 2'b00
	5 - 4	CV_RANGE<1:0>	2'b00	00: CRANGE = ±16pF, CCM_RANGE = 48pF ; 01: CRANGE = ±12pF, CCM_RANGE = 36pF ; 10: CRANGE = ±8pF, CCM_RANGE = 24pF ; 11: CRANGE = ±4pF, CCM_RANGE = 24pF ;
	3 -0	ODR_P<3:0>	4'b0000	PADC Output Data Rate Setting 0000: 4.8kHz, 0001: 2.4kHz, 0010: 1.2kHz, 0011: 600Hz, 0100: 300Hz, 0101: 150Hz, 0110: 75Hz, 0111: 37.5Hz, 1000: 20Hz(with 60Hz notch), 1001: 20Hz (with 50Hz notch), 1010: 10Hz (with 60Hz notch), 1011: 10Hz (with 50Hz notch), 1100: 5Hz (with 60Hz notch), 1101: 5Hz (with 50Hz notch), 1110,1111: PADC disabled

PCH_Config2(R/W)

Addr	Bit	Register Name	Default	Description
0xa5	7 – 6	DIG_GAIN<1:0>	2'b00	Digital gain configuration
				00: 1X, 01:2X, 10: 4X, 11: 8X
	5 – 1	RESERVED	5'b00000	Reserved. Should be 0
	0	RAW_P	1'b0	0: update calibrated sensor data into 'PDATA' register.
				1: update raw primary ADC data into 'PDATA' register after conversion.

TCH_Config (R/W)

Addr	Bit	Register Name	Default	Description
0xa6	7	EXT_TEMP	1'b0	0: Internal temperature sensor selected; 1: External temperature sensor selected (TEMP pin as external
				temperature sensor input)
	6 – 5	GAIN_T<1:0>	2'b00	Gain for External temperature sensors;
				00: 1X, 01: 2X, 10/11: 4X(only 4x for internal temperature)
	4 – 1	ODR_T	4'b0000	TADC output data rate, similar as ODR_P
				0000: 4.8kHz, 0001: 2.4kHz, 0010: 1.2kHz, 0011: 600Hz, 0100: 300Hz, 0101: 150Hz, 0110: 75Hz, 0111: 37.5Hz, 1000: 20Hz (with 60Hz notch), 1001: 20Hz (with 50Hz notch), 1010: 10Hz (with 60Hz

			notch), 1011: 10Hz (with 50Hz notch), 1100: 5Hz (with 60Hz notch), 1101: 5Hz (with 50Hz notch), 1110, 1111: TADC disabled
0	RAW_T	1'b0	1: Store the raw TADC output into 'TDATA' register; 0: Store the calibrated TADC data into 'TDATA' register

CLAMPH (R/W)

Addr	Bit	Register Name	Default	Description
0xa7	7 – 0	CLAMPH<7:0>	0x00	Set clamping high level.

CLAMPL (R/W)

Addr	Bit	Register Name	Default	Description
0xa8	7 – 0	CLAMPL<7:0>	0x00	Set clamping low level.

OFFSET0 (R/W)

Addr	Bit	Register Name	Default	Description
0xa9	7 – 0	OFF0<15:8>	0x00	Sensor calibration coefficient, offset at T0. LSB=1/2^15, RANGE (-1,
Охаа	7 – 0	OFF0<7:0>	0x00	+1)

CTC1 (R/W)

Addr	Bit	Register Name	Default	Description
0xab	7 – 0	CTC1<15:8>	0x00	Sensor calibration coefficient,
Охас	7 – 0	CTC1<7:0>	0x00	CAL_MODE = 0: the 1st order temperature coefficient of offset. LSB = 1/2^22, RANGE (-0.00781, +0.00781);
				CAL_MODE = 1: the 1st order temperature coefficient of offset for segment 0. LSB = 1/2^22, RANGE (-0.00781, +0.00781)

CTC2 (R/W)

Addr	Bit	Register Name	Default	Description
0xad	7 – 0	CTC2<15:8>	0x00	Sensor calibration coefficient,
0xae	7 – 0	CTC2<7:0>	0x00	CAL_MODE = 0: the 2nd order temperature coefficient of offset. LSB = 1/2^29, RANGE (-6.1e-5, 6.1e-5);
				CAL_MODE = 1: the 1st order temperature coefficient of offset for segment 1, LSB = 1/2^22, RANGE (-0.00781, +0.00781)

S0 (R/W)

Addr	Bit	Register Name	Default	Description
0xaf	7 – 0	S0<15:8>	0x00	Sensor calibration coefficient, sensitivity at T0. LSB = $1/2^{15}$
0xb0	7 – 0	S0<7:0>	0x00	(unsigned), RANGE (0, 2)

STC1 (R/W)

Addr	Bit	Register Name	Default	Description
0xb1	7 – 0	STC1<15:8>	0x00	Sensor calibration coefficient,
0xb2	7 – 0	STC1<7:0>	0x00	CAL_MODE = 0: the 1st order temperature coefficient of sensitivity.

LSB = 1/2^22, RANGE (-0.00781, +0.00781);
CAL_MODE = 1: the 1st order temperature coefficient of sensitivity for segment 0. LSB = 1/2^22, RANGE (-0.00781, +0.00781)

STC2 (R/W)

Addr	Bit	Register Name	Default	Description
0xb3	7 – 0	STC2<15:8>	0x00	Sensor calibration coefficient,
0xb4	7 – 0	STC2<7:0>	0x00	CAL_MODE = 0: the 2nd order temperature coefficient of sensitivity. LSB = 1/2^29, RANGE (-6.1e-5, 6.1e-5);
				CAL_MODE = 1: the 1st order temperature coefficient of sensitivity for segment 1. LSB=1/2^22, RANGE (-0.00781, +0.00781)

KS (R/W)

Addr	Bit	Register Name	Default	Description
0xb5	7 – 0	KS<15:8>	0x00	Sensor calibration coefficient, the 2nd order nonlinearity
0xb6	7 – 0	KS<7:0>	0x00	coefficient. LSB = 1/2^15, RANGE (-1, +1)

KSS (R/W)

Addr	Bit	Register Name	Default	Description
0xb7	7 – 0	KSS<15:8>	0x00	Sensor calibration coefficient, the 3rd order nonlinearity
0xb8	7 – 0	KSS<7:0>	0x00	coefficient, LSB = 1/2^16, RANGE (-0.5, +0.5)

T0 (R/W)

Addr	Bit	Register Name	Default	Description
0xbf	7 – 0	T0<7:0>	0x00	Sensor calibration coefficient, reference temperature point, real reference temperature, REAL_T0 = T0 + 25. LSB = 1. RANGE (- 128, +127)

KTS (R/W)

Addr	Bit	Register Name	Default	Description
0xc0	7 – 0	KTS<7:0>	0x00	Sensor calibration coefficient, the 2nd order nonlinearity coefficient for external temperature sensor. LSB = $1/2^7$, RANGE (-1, +1)

MTO (R/W)

Addr	Bit	Register Name	Default	Description
0xc1	7 – 0	MTO<15:8>	0x00	Sensor calibration coefficient, offset coefficient of external
0xc2	7 – 0	MTO<7:0>	0x00	temperature sensor, MTO: LSB = 1/2^15, RANGE (-1, +1)

KT (R/W)

Ad	dr	Bit	Register Name	Default	Description
0xc	:3	7 – 0	KT<15:8>	0x00	Sensor calibration coefficient: sensitivity coefficient of external

Datasheet (EN) 1.0

0xc4	7 – 0	KT<7:0>	0x00	temperature sensor, KT: LSB = 1/2^12, RANGE (-8, +8)
------	-------	---------	------	--

TEMP_THRES (R/W)

Addr	Bit	Register Name	Default	Description
0xc5	7 – 0	TEMP_THRES_H<7:0>	0x00	Upper limit of temperature data
0xc6	7 – 0	TEMP_THRES_L<7:0>	0x00	Lower limit of temperature data

SPARE (R/W)

Addr	Bit	Register name	Default	Description
0xb9	7 – 0	SPARE1<7:0>	0x00	Spare register 1, can be used for SENT slow channel configuration
0xba	7 – 0	SPARE2<7:0>	0x00	Spare register 2, can be used for SENT slow channel configuration
0xbb	7 – 0	SPARE3<7:0>	0x00	Spare register 3, can be used for SENT slow channel configuration
0xbc	7 – 0	SPARE4<7:0>	0x00	Spare register 4, can be used for SENT slow channel configuration
0xbd	7 – 0	SPARE5<7:0>	0x00	Spare register 5, can be used for SENT slow channel configuration
0xbe	7 – 0	SPARE6<7:0>	0x00	Spare register 6, can be used for SENT slow channel configuration
0xc7	7 – 0	SPARE7<7:0>	0x00	Spare register 7, can be used for SENT slow channel configuration
0xc8	7 – 0	SPARE8<7:0>	0x00	Spare register 8, can be used for SENT slow channel configuration
0xd3	7 – 0	SPARE9<7:0>	0x00	Spare register 9, can be used for SENT slow channel configuration
0xd4	7 – 0	SPARE10<7:0>	0x00	Spare register 10, can be used for SENT slow channel configuration
0xd5	7 – 0	SPARE11<7:0>	0x00	Spare register 11, can be used for SENT slow channel configuration
0xd6	7 – 0	SPARE12<7:0>	0x00	Spare register 12, can be used for SENT slow channel configuration
0xd7	7 – 0	SPARE13<7:0>	0x00	Spare register 13, can be used for SENT slow channel configuration
0xd8	7 – 0	SPARE14<7:0>	0x00	Spare register 14, can be used for SENT slow channel configuration

PADC_OFF (R/W)

Addr	Bit	Register Name	Default	Description
0xc9	7 – 0	PADC_OFF<23:16>	0x00	PADC calibration coefficient: PADC offset, LSB = $1/2^{23}$,
Охса	7 – 0	PADC_OFF<15:8>	0x00	RANGE (-1, +1)
0xcb	7 – 0	PADC_OFF<7:0>	0x00	

PADC_GAIN (R/W)

Addr	Bit	Register Name	Default	Description
0xcc	7 – 0	PADC_GAIN<15:8>	0x00	PADC calibration coefficient: PADC gain, LSB = $1/2^{16}$,
0xcd	7 – 0	PADC_GAIN<7:0>	0x00	RANGE (-0.5, +0.5)

P0 (R/W)

Datasheet (EN) 1.0

Addr	Bit	Register Name	Default	Description
0xce	7 – 0	P0 <7:0>	0x00	Sensor calibration coefficient: reference pressure point for nonlinearity calibration, LSB = $1/2^7$, RANGE (-1, 1)

SERIAL_NUMBER (R/W)

Addr	Bit	Register name	Default	Description
0xcf	7 – 0	SERIAL_NUMBER<31:24>	0x00	Serial Number
0xd0	7 – 0	SERIAL_NUMBER <23:16>	0x00	
0xd1	7 – 0	SERIAL_NUMBER <15:8>	0x00	
0xd2	7 – 0	SERIAL_NUMBER <7:0>	0x00	

EEPROM_LOCK (R/W)

Addr	Bit	Register Name	Default	Description
0xd9	7	EEPROM_LOCK	1'b0	1: EEPROM lock , set 1 and then EEPROM can't be programmed. (Won't be effective until next power on reset or soft reset after EEPROM is programmed)
	6 – 0	PARTID (read only)	7'b0001111	NOVOSENSE chip ID

6. Function Description

6.1. Overview

The NSC9264 is a highly integrated and AEC-Q100 qualified sensor conditioner for capacitive sensors. The chip supports Overvoltage and Reverse-voltage protection. SENT output compliant with SAE J2716 is available. The NSC9264 uses differential inputs with at most \pm 16pF differential input capacitance range and 76.8pF common mode capacitance range. The chip incorporates five parts: analog front-end module, digital module, SENT interface module, power supply module and serial interfaces. The block diagram of the NSC9264 is shown in Figure 6.1.

Analog front-end module includes a primary signal measurement channel with a C/V converter followed by a 24-bit $\Sigma\Delta$ ADC, a temperature measurement channel with also a 24-bit $\Sigma\Delta$ ADC, for precision sensor signal and temperature measurement.

The digital module is composed of registers, EEPROM, control logic, and a built-in MCU. The sensor calibration algorithm is implemented with the built-in MCU and can supports up to 2nd order temperature drift compensation of offset and sensitivity for the sensor. It can also compensate the nonlinearity of sensor output up to 3rd order. The configuration parameters and coefficients for calibration are stored in the EERPOM of 64 bytes. Meanwhile, the built-in MCU takes charge of data flow generation of Serial Message Channel (also denoted as Slow Channel in earlier revisions of SAE J2716), which supports flexible configuration as user-defined.

The SENT interface module includes SENT controller and SENT physical driver, according to the specification of SAE J2716 APR2016. The data transmission carries the payload data of Fast Channel and Serial Message Channel, including diagnostic information.

The power supply module includes a high precision voltage reference, a sensor voltage driver, over-voltage and reverse-voltage protection block.

The NSC9264 supports OWI serial interface, writing and reading registers of configuration, calibration coefficients and data. Through the highly integrated and flexible interface, the NSC9264 only needs one wire to realize sensor calibration, field verification and full scale range modification.

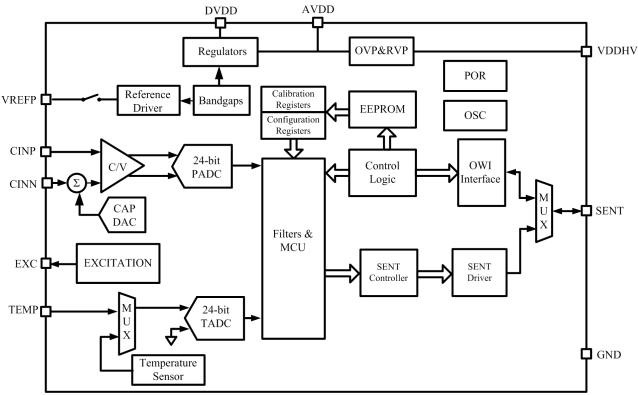


Figure 6.1 Block Diagram of the NSC9264

6.2. Analog Front-end Module 1: Primary Signal Channel

6.2.1.Capacitance Measurement Mode

The NSC9264 generates a square wave at EXC pin with 86kHz frequency and 2V amplitude, which is used to drive input capacitor.

As shown in Figure 6.2, where the external input capacitors are connected. The differential input capacitors' common plate is driven by the square wave at EXC pin. Since the voltage at CINP and CINN keeps constant, the input parasitic capacitance would not affect the output.

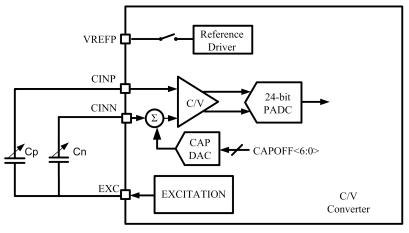


Figure6.2 C/V Converter

6.2.2. The Measurement Range of C/V Converter

6.2.2.1. The Differential Input Capacitance Range

The PADC converts the analog output of C/V converter to digital output, which is filtered by a digital filter with 24-bit digital output PDATA_{RAW}. PDATA_{RAW} is expressed by,

$$PDATA_{RAW} = \frac{Cp - Cn - CAPOFF}{|C_{RANGE}|} * 2^{23}$$

CAPOFF is an internal offset compensated capacitance configured by CAPOFF<6:0>. The unit capacitance of CAPDAC is 0.5pF, so it's as large as 127*0.5pF = 63.5pF. CRANGE is the full-scale range of C/V measurement configured by CV_RANGE<1:0> as referred to Section 4.1. PDATA_RAW can be read from P channel data registers (Reg0x06, 07, 08) when RAW_P = 1. When RAW_P = 0, the built-in MCU will calibrate the sensor using sensor calibration coefficients and the data of temperature measurement. Therefore, the contents of PDATA registers are the sensor output after temperature calibration.

6.2.2.2. The Common Mode Capacitance Range

When the differential input capacitance is not out of range (PDATAraw is in between±1), the common mode capacitance range is related to VREF and CV_RANGE<1:0> as referred to Section 5.2.

6.2.3. Digital Filter

The bandwidth and output data rate (ODR) of the digital filter can be set by 'ODR_P'. ODR can be set from 4.8 kHz to 5 Hz. The lower ODR, the lower noise the PADC output will have, in the cost of slower time response. Table 6.1 shows the effective number of bits (ENOB) of PADC output with different ODR_P settings. The relationship of ENOB with RMS noise is:

$$ENOB_{RMS} = 24 - log_2 (RMS_{ADC})$$

RMSADC is the RMS value of ADC output noise in LSB. The relationship between RMS ENOB (ENOB_{RMS}) and noise free ENOB (ENOB_{NF}) is shown as below:

$$ENOB_{NF} = ENOB_{rms} - 2.7$$

ODR_P(Hz)	CRANGE=±16pF	CRANGE=±12pF	CRANGE=±8pF	CRANGE=±4pF
4800	15.6	15.7	16.0	15.9
2400	15.9	15.9	16.2	16.0
1200	16.3	16.2	16.7	16.6
600	16.7	16.6	17.1	17.0
300	17.1	17.2	17.6	17.4
150	17.6	17.6	18.0	17.8
75	18.1	18.1	18.5	18.4
37.5	18.6	18.6	19.1	18.7
20	19.0	19.1	19.4	19.3
10	19.6	19.5	19.9	19.8
5	20.1	20.0	20.4	20.1

Table 6.1 ENOBRMS of PADC Under Different ODR Settings

6.3. Analog Module 2: Temperature Measurement Channel

The temperature measurement channel is to measure the working temperature of the sensor for the temperature compensation of the sensed signal. This channel works independently of the capacitance measurement channel. The NSC9264 supports both internal temperature sensor and external temperature sensor, selected by register bit 'EXT_TEMP' bit. The temperature sensor's output is digitized by a 24-bit ADC (TADC) and also digital filtered. The ODR setting of the temperature measurement channel is the same as the primary signal channel, set by 'ODR_T'. When the temperature difference between the sensor element and the NSC9264 chip is acceptable, internal temperature sensor can be used. Otherwise, a proper external temperature measurement scheme should be chosen, such as diode, RTD, NTC or the bridge resistor itself, etc. Through different 'RAW_T' setting, either the direct TADC data or the calibrated temperature data can be read from 'TDATA' registers.

6.3.1. Internal Temperature Sensor

The internal temperature sensor is factory calibrated, with its calibration coefficients stored at EEPROM registers reg0xC1, reg0xC2 and reg0xC3. When 'RAW_T' is set to 0 and 'GAIN_T' is set to 4X, the NSC9264 can provide a temperature reading in degree Celsius, in the format of

$$T = TDATA/2 \wedge 16 + 25^{\circ}C$$

For example, 'TDATA = 0x1FF24B' corresponding to 56.95°C. The relationship between the noise of the internal temperature sensor and 'ODR_T' setting is shown in Table 6.2.

ODR (Hz)	4800	2400	1200	600	300	150	75	37.5	18.75	10	5
RMS Noise in °C	0.0079	0.0060	0.0045	0.0038	0.0032	0.0020	0.0015	0.0011	0.0008	0.0008	0.0007

Table 6.2 RMS Noise of Internal Temperature Sensor Under Different ODR_T

6.3.2. External Temperature Sensor

When external temperature sensor mode is selected, the temperature sensing signal input from the TEMP pin is buffered for TADC conversion. The reference voltage of the TADC is also VREF. The gain of the TADC can be 1X, 2X and 4X. The relationship between TDATA_{RAW} and the temperature input is

$$TDATA_{RAW} = VTEMP * GAIN_T/VREF * 2^{23}$$

When RAW_T = 0, the built-in MCU calibrated the offset, sensitivity and nonlinearity of the measured temperature signal. Please refer to application note NOVOSENSE provided for calibration description details. The external temperature sensing can be done in many ways, including RTD, diode and sensor bridge resistance itself. Figure 6.3 gives an example using a low TC drift resistor to sense the bridge resistance, which is usually proportional to the temperature of the sensor element. In case the bridge sensor is current driven, the bridge voltage can be used as temperature sensing input directly.

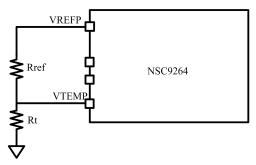


Figure 6.3 External Temperature Sensing Using Sensor Bridge and A Reference Resistor

The output data rate of TADC can be set by 'ODR_T', similar as the primary signal channel. The relationship between ODR_T and the ENOB of TADC is shown in Table 6.3.

Table 6.3 ENOB of TADC Under Different ODR_T (External Temperature Sensor Mode)

	ENOB		
ODR_T(HZ)	GAIN_T = 1	GAIN_T=2	GAIN_T=4
4800	17.2	17.0	16.4
2400	17.6	17.4	16.7
1200	18.0	17.6	16.7
600	18.3	17.8	16.9
300	18.6	18.0	17.1
150	19.0	18.4	17.5
75	18.9	18.1	17.1
37.5	19.4	18.2	17.6
20	19.8	18.9	18.0
10	19.8	19.1	18.0
5	20.4	19.4	18.3

6.4. SENT Interface Module

6.4.1.Physical Driver

The SENT physical interface provides a slew rate controlled push-pull output driver. And the output of SENT driver has short circuit protection.

Required external circuitry is given in the following picture. Values for the external components are given in chapter 6.3.2 of SAE J2716 APR2016.

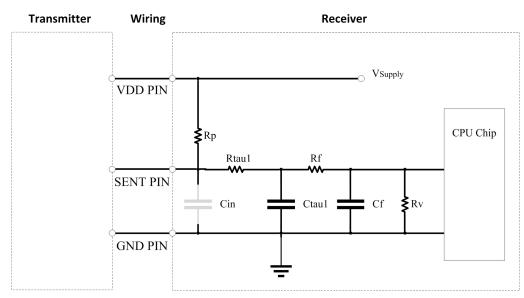


Figure 6.4 External Circuity For SENT Interface

6.4.2.Fast Channel

SENT (Single Edge Nibble Transmission) is a one wire protocol that encodes data nibbles (four bits) by one pulse per nibble. The communication is unidirectional: the NSC9264 slave sends pressure signal values autonomously whereas the master acts as a receiver only. The 'atomic unit' of time measurement in the context of the SENT protocol is called a clock tick.

Figure 5.5 illustrates one sent message, which is combined of Sync frame, Status nibble, Data nibble1 to Data nibble6, CRC nibble and optional Pause pulse. The message starts with the Sync frame which is always 56 clock ticks long. This pulse is used by the receiver to detect the start of that message and to measure the transmitters clock tick time. Next is the Status nibble, followed by six Data nibbles and a CRC check sum nibble. Since the pulse times depend on the transmitted values (except for the Sync frame) the length of such a message is not fixed. With the EEPROM reg0xA2 NPP configuration bit being cleared, a Pause pulse can be added after the CRC nibble. The length of that pulse is always adapted to the previously sent data such that a constant message length of 282 clock ticks is guaranteed, as the following figure shows.

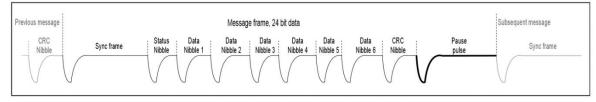


Figure 6.5 Message Transmission Sequence with Pause Pulse

Pressure values of primary signal channel are always transmitted within 3 nibbles, resulting in 12 bits. By default configuration the 6 data nibbles contain the following information:

1.Data nibbles 1 to 3 contain pressure information. The pressure value is sent as a 12-bit unsigned integer number, the most significant nibble first.

2.Data nibble 4 and 5 contain an 8-bit rolling counter, most significant nibble first. This modulo-256 counter is incremented with every message.

3.Data nibble 6 is the inverted data nibble 1.

The above format applies to frame format H.4 in Table H-1 of SAE J2716 APR2016 document, which can be used for the sensor type of 'P/S' or 'P/S/t'.

With EEPROM reg0xA2 bit2 to bit0 changes, the NSC9264 provides several frame formats compliant with H.1 / H.2 / H.3 / H.4 / H.5 / H.6 / H.7.

Some values of Data nibble 1 to Data nibble 3 are reserved for special purposes, such as initialization code and diagnostic error code, as shown in Table 6.4.

Table 6.4 Data N	Vibble Values
------------------	---------------

Signal Interpretation	Signal Value
Diagnostic Error Code	4089 4095
High Clamp	4088
Pressure Data	24087
Low Clamp	1
Initialization	0

6.4.3. Serial Message Channel

The Status nibble bits contain the following data: Bit 0 is set if and only if an error is present on the primary signal channel; Bit 1 is reserved; Bit 2 and 3 contain information for serial message data transmission. The NSC9264 supports Enhanced Serial Message Format, as shown in Table 6.5. This encoded format has 8-bit Message ID.

Serial Message Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Status Nibble Bit3	1	1	1	1	1	1	0	0	0 Message ID[7:4] 0 Message ID			D[3:0]	0				
Status Nibble Bit2 CRC Data				a Byte	2													

Table 6.5 Enhanced Serial Message Format Diagram

The sending of Enhanced Serial Message data is looped according to the schedule table. An entire schedule table is composed of no more than 64 Serial Messages, and the contents of message include supplementary data channel such as temperature data and other parameters for Fast Channel or Serial Message Channel. The schedule table is generated by the built-in MCU of NSC9264. The MCU's program code is pre-stored in the internal ROM, which cannot be modified by customers. Please contact NOVOSENSE if a customized Serial Message Channel specification is needed.

Default schedule table based on Enhanced Serial Message Format is shown in Table 6.6. The listed Message IDs carry the data of supplementary temperature (MSG ID23), diagnostic error code (MSG ID01), OEM information and so on. The 28 Serial Messages are looped and filled into the message format Table 6.5 in turn, and the serial data flow is merged into the Fast Channel of primary signal. For a detailed description of each Message ID, refer to the application note "NSC9264 SENT_Interface_Description Rev1.1_EN".

MSG #	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	15	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8
MSG	2	2	2	0	2	0	0	0	0	0	0	0	0	0	0	0	9	9	9	0	9	9	9	0	9	9	2	0
ID	9	A	B	1	C	3	4	1	5	6	7	1	8	9	A	1	0	1	2	1	3	4	5	1	6	7	3	1

Table 6.6 Example of Serial Message Schedule Table

6.5. Power Management

The NSC9264 internally includes a precision bandgap reference with very low temperature drift, less than 0.2% during full temperature range (-40~125 °C). This reference voltage is used in the constant voltage or current driving circuits for clock generator and ADC etc.

6.5.1.Power on Reset

A POR block is integrated in the NSC9264 for power on reset and EEPROM loading. When AVDD<2.5V, the chip is in reset state. After AVDD > 2.5V, the POR output is released and EEPROM is loaded afterwards. The POR circuits have 100mV hysteresis, that is to say the chip won't go into the reset state again until the AVDD is dropped as low as 2.4V.

6.5.2. Over-voltage and Reverse-voltage Protection

The NSC9264 integrates an Over-voltage and Reverse-voltage Protection on power supply. Over-voltage as high as 24V and Reverse-voltage as low as -24V are allowed. In the case of Over-voltage, AVDD is clamped at a normal voltage as to protect the internal circuit.

6.6. Build-in MCU core and Control Logics

6.6.1.Work Modes

Two Different work modes are supported by the NSC9264, command mode and active mode, which can be configured by the register 'CMD' (Reg0x30).

6.6.1.1. Command Mode

The command mode can be entered by writing the register 'CMD' with 0x00, which is used for configuring the chip outside. All the EEPROM registers can only be modified in this mode.

6.6.1.2. Active Mode

The active mode is the default mode after powering up, which can also be entered by writing the register 'CMD' with 0x03. In this mode, the primary measurement channel and the temperature channel continuously update their measured values into the 'PDATA' or 'TDATA' registers, and the selected output mode will be activated simultaneously. When the register bit 'RAW_P/T' = 1, the ADC conversion results will be put into the 'PDATA' or 'TDATA' directly, otherwise, every time the primary measurement channel ADC conversion ends, the build-in MCU core does once sensor calibration flow with the latest temperature value measured.

6.6.2.EEPROM

64 bytes EEPROM is contained in the NSC9264 to store the chip configurations and sensor calibration coefficients.

6.6.2.1. Loading

The contents of the EEPROM will be loaded into the EEPROM registers automatically after power up or soft-reset with the CRC checking. If the calculated CRC result does not match with what stored in the EEPROM, the 'CRC_ERROR' bit will be set and the analog output state will be decided according to the fault diagnostic and alarm configurations. Another status register bit 'LOADING_END' will be set after the loading completes.

6.6.2.2. Programming

Writing EEPROM registers will not program the EEPROM directly. The contents of the EEPROM registers will be programmed into the EEPROM by following sequence:

1.Set the register byte 'COMMAND' (Reg0x30) with 0x23 to enter EEPROM programming mode

2.Writing the register byte 'EE_PROG' (Reg0x6A) with 0x3E or 0xBE to start EEROM programming.

During EEPROM programming, a new CRC check code will be generated according to the contents of the EEPROM registers and will be programmed to the EEPROM simultaneously. The content of the 'EE_PROG' register will automatically come back to 0x00 to indicate the programming is done. A re-powering up or soft-reset is needed to reload the EEPROM contents back to the EEPROM registers to check the programmed value.

6.6.2.3. Lock and Unlock

The EEPROM inside the NSC9264 can be locked by setting the 'EEPROM_LOCK' bit and programming it into the EEPROM. After locked, the EEPROM cannot be programmed again, and only a special EVA-kits provided by NOVOSENSE can unlock it.

6.6.3.Build-in MCU Core

The NSC9264 is integrated with a built-in MCU core, which performs the signal processing, sensor calibration, EEPROM loading and programming, SENT Serial Message Channel data generation, etc. The MCU's program code is pre-stored in the internal ROM, which cannot be modified by customers. Please contact NOVOSENSE if a customized MCU program code is needed.

6.6.4.Calibration

The NSC9264 supports to compensate sensor offset, sensitivity, temperature drift up to 2nd order , and non-linearity up to the 3rd order.

6.7. Diagnostic and Alarm

NSC9264 can detect that the capacitor input pin is open, or there is leakage current at the capacitor input pin.

NSC9264 supports over-voltage detection and under-voltage detection. The over-voltage detection threshold is 6V and the under-voltage detection threshold is 4V.

NSC9264 supports temperature out-of-range check and thermal shutdown protection. The over temperature threshold is 180°C. When thermal shut down happens, the output driver of SENT interface is off until the temperature recovers. NSC9264 records whether there is thermal shut down happens after recent power-on-reset.

Besides the sensor diagnostic functions, the NSC9264 supports ROM failure check, EEPROM CRC check, watch-dog timeout check, and out-of-range detection of measuring channels.

Any of the above internal error detection has indicated a failure. The failure is annunciated by certain error code through the Message ID01 of Serial Message Channel for alarming.

7. Serial Interface

The OWI serial interface is supported in the NSC9264 to configure registers, program EEPROM and read measured data. When register bit 'OWI_WINDOW' = 0, the time between 10ms and 80ms after powering up is defined as the OWI entering window. If a specific 24 bits OWI entering pattern is detected via OWI pin in this window, the chip enters OWI communication mode, otherwise enters analog output mode (as shown in Figure 7.1).

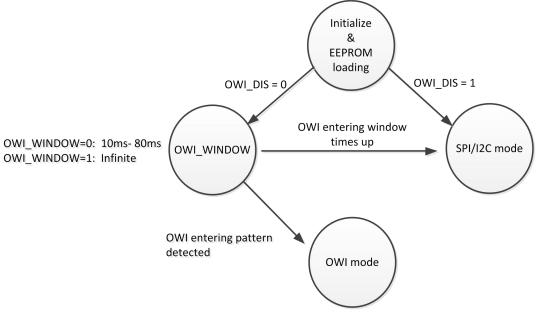


Figure 7.1 Definition of Serial Communication Mode

7.1. OWI Pin Configuration

The OWI pin can be configured as open-drain or push-pull output by setting register 'OWI_PUSHPULL'. When 'OWI_PUSHPULL' = 0, OWI pin is open-drain output with the need of a pull-up resistor. When 'OWI_PUSHPULL' = 1, OWI pin is push-pull output.

7.2. Timing Spec

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
t _{period}	OWI bit period		20		4000	Us
t _{pulse_0}	Duty cycle for 0		1/8	1/4	3/8	t_{period}
t _{pulse_1}	Duty cycle for 1		5/8	3/4	7/8	t_{period}
t _{start}	Start low pulse time		20		4000	Us
t _{stop}	Stop condition time		2			t_{period}

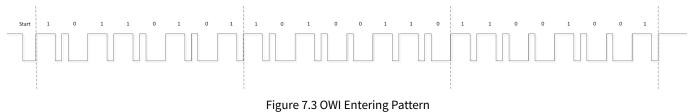


Figure 7.2 OWI Timing

7.3. Enter OWI Mode

If 'OWI_WINDOW' = 0, the time between 10ms and 80ms after powering up is OWI entering window. If a special 24 bits OWI entering pattern (0xB5A6C9, as shown below) is detected via OWI pin in this window, the chip enters OWI communication mode. Under this setting, the OUT pin is disabled during the OWI window and OWI mode; the OWI pin and the OUT pin can be shorted together to support 3-wire sensor products.

If 'OWI_WINDOW' = 1, the OWI window's length becomes infinite, the OUT pin is activated during OWI window and OWI mode, and the OWI pin and OUT pin cannot be shorted together.

In OWI communication, the bit period is determined by the period of the last bit of OWI entering pattern, and cannot be changed during the entire communication, so the bit period during OWI communication should keep the same as the OWI entering pattern.

7.4. OWI Protocol

The OWI protocol used is defined as follows:

a) Idle State

During inactivity of the bus, OWI line is pulled-up to high voltage level.

b) Start Condition

When OWI line is in idle state a low pulse (return to high) with a pulse width between 20us to 4ms indicates a start condition. Every command has to be initiated by a start condition sent by the master. The master can only generate the start condition when the OWI line is in idle state.

c) Stop Condition

After the write or read operation ends, the bus comes back to the idle state automatically. During any time of a transmission, the bus can be set back to the idle state by forcing the OWI line to reach a constant high or low voltage level for at least two times of the bit period (t_{period}).

d) Addressing

After the start condition, the master sends the addressing information, consisting of an 8-bit register address (MSB first), 2-bit byte number and a read/write-bit (0-write, 1-read). The register address indicates which register you will write into or read from; the byte number indicates how many bytes will write/read continuously: 00: 1byte, 01: 2bytes, 10: 3bytes, 11: 4bytes; the read/write-bit indicates it a read operation (0) or write operation (1).

e) Write Operation

During transmission from master to slave (WRITE), the read/write bit is followed by 1/2/3/4 bytes (according to the byte NO. bits) transmitted data (MSB first), and the addressed register and follows will be refreshed to the written data after a stop condition.

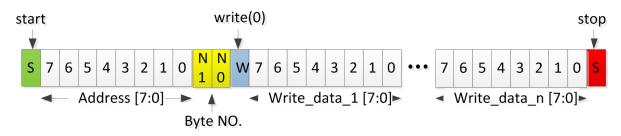


Figure 7.4 OWI Write Operation

f) Read Operation

During transmission from slave to master (READ), the master should set its OWI port as input after the read/write bit is sent, then the slave begins to transmit 1/2/3/4 bytes (according to the byte NO. bits) data (MSB first), which is the content in the addressed register and following ones. Each data bytes include 8 bits of data and 2 bits of parity check code C1 and C0,

C1 = Read_data [7] ^ Read_data [5] ^ Read_data [3] ^ Read_data [1];

C0 = Read_data [6] ^ Read_data [4] ^ Read_data [2] ^ Read_data [0].

The master can check the transmission with the parity check code. After all data bytes transmitted, the slave goes back to idle state automatically.

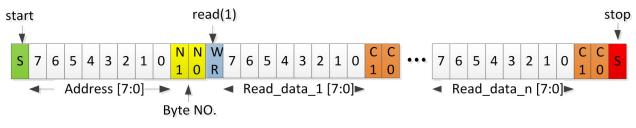


Figure 7.5 OWI Read Operation

7.5. Quit OWI Communication

Writing Reg0x61 with 0x5d during OWI mode can temporarily or permanently quit the OWI communication for SENT output.

8. Application Note

8.1. Typical Application Circuit

Capacitive sensor application circuit with SENT output is shown in Figure 8.1.

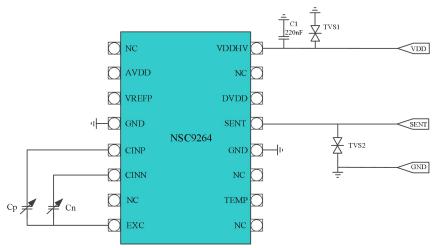
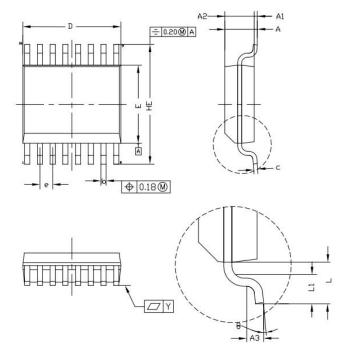



Figure 8.1 Capacitive Sensor with SENT output

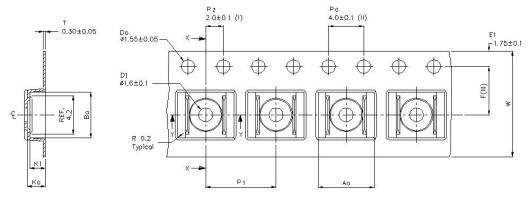
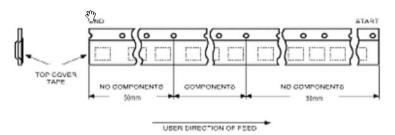
9. Package Information

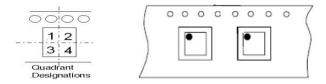
Ē	CONTROLLING	DIMENSION	MM	

SYMBOL	MIL	LIME	TER		INCH	
UNDE	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
Α			1.73			0.068
A1	0.10		0.25	0.004		0.010
A2	1.40		1.55	0.055		0.061
b	0.20		0.31	0.008		0.012
с	0.18		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E	3.80		4.00	0.150		0.157
HE	5.80		6.20	0.228		0.244
е	0).635	bsc	0	.025	bsc
L	1	.00 bs	5C	0.0)39 b	sc
L1	0.41		0.89	0.016		0.035
Y		0.09		222	0.004	
A3		0.25			0.010	
θ	0*		8*	0°		8.

Figure 9.1 SSOP16 Package Shape and Dimension

10. Tape and Reel Information


Figure 10.1 Tape/reel Diagram for SSOP16

Part No.	Package Type	A0	B0	K0	K1	F	P1	W
		(mm)						
NSC9264_Q0SSR	SSOP16	6.5±0.1	5.3±0.1	2.2±0.1	1.9±0.1	5.5±0.1	8.0±0.1	12.0±0.3

There is no component at the head and the tail of each tape/reel, where the space is 50cm, as shown in the following figure,

Pin 1 is located at the first quadrant, as shown in the following figure,

11. Ordering Information

Part Number	Temperature	Vehicle Specification Level	MSL	Package Type	SPQ
NSC9264_Q0SSR	-40 to 150°C	AEC-Q100 Grade 0	1	SSOP16	2500

12. Revision History

Revision	Description	Date
1.0	Initial Version.	2024/4/14

IMPORTANT NOTICE

The information given in this document (the "Document") shall in no event be regarded as any warranty or authorization of, express or implied, including but not limited to accuracy, completeness, merchantability, fitness for a particular purpose or infringement of any third party's intellectual property rights.

Users of this Document shall be solely responsible for the use of NOVOSENSE's products and applications, and for the safety thereof. Users shall comply with all laws, regulations and requirements related to NOVOSENSE's products and applications, although information or support related to any application may still be provided by NOVOSENSE.

This Document is provided on an "AS IS" basis, and is intended only for skilled developers designing with NOVOSENSE' products. NOVOSENSE reserves the rights to make corrections, modifications, enhancements, improvements or other changes to the products and services provided without notice. NOVOSENSE authorizes users to use this Document exclusively for the development of relevant applications or systems designed to integrate NOVOSENSE's products. No license to any intellectual property rights of NOVOSENSE is granted by implication or otherwise. Using this Document for any other purpose, or any unauthorized reproduction or display of this Document is strictly prohibited. In no event shall NOVOSENSE be liable for any claims, damages, costs, losses or liabilities arising out of or in connection with this Document or the use of this Document.

For further information on applications, products and technologies, please contact NOVOSENSE (www.novosns.com).

Suzhou NOVOSENSE Microelectronics Co., Ltd